بررسی علل تغییر رفتار مصرف‌کنندگان سیستم‌های حمل‌ونقل مبتنی بر درخواست با رویکرد زیست‌بوم نوآوری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

2 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

چکیده

هدف: پژوهش حاضر باهدف یافتن علل تغییر رفتار مصرف‌کنندگان پلتفرم‌های دیجیتال حمل‌ونقل مبتنی بر درخواست برخط در کشور ایران انجام شده است.
روش‌شناسی: این پژوهش از لحاظ هدف کاربردی بوده و از رویکرد کیفی بهره برده است. در پژوهش حاضر تجزیه‌وتحلیل داده‌ها با روش تحلیل لایه‌ای علت‌ها انجام گرفت. پژوهش ارائه شده با استفاده از مطالعه کتابخانه‌ای و تکنیک دلفی متشکل از 18 خبره دانشگاهی و کسب‌وکار سعی در مطالعه پدیده موردنظر داشته است.
یافته‌ها: یافته‌های پژوهش علل متعددی برای تغییر رفتار مصرف‌کنندگان در زیست‌بوم نوآوری پلتفرم‌های دیجیتال حمل‌ونقل مبتنی بر درخواست برخط در چهار سطح نشانه‌ها، سطح سیستمی، سطح جهان‌بینی و سطح استعاره‌ها و اسطوره‌ها نشان داده است. مهم‌ترین یافته‌ها در سطح سیستمی و استعاره‌ها و اسطوره‌هابودند. یافته‌های سطح سیستمی شامل ستفاده از ابزارهای فناوری اطلاعات، کلان روندهای جدید (کلان روند توجه بیشتر به محیط‌زیست و کلان روند افزایش کارایی)، اقتصاد اشتراکی و افزایش بهره‌وری است. یافته‌های سطح استعاره‌ها و اسطوره‌ها نیز شامل تمایل ذاتی بشر به‌سهولت حداکثری، تمایلی ذاتی بشر به کمترین عدم اطمینان، نیاز به شفافیت، تمایل به بیشترین صرفه‌جویی در منابع و زمان است.
نتیجه‌گیری: انتظار مصرف‌کنندگان برای بهبود پیوسته، احتمالاً موجب شکل‌گیری نوآوری‌های بیشتر در این زیست‌بوم خواهد شد. در این زیست‌بوم همچنین ظهور بازیگران جدید برای دستیابی به سهولت بیشتر، شفافیت بیشتر، کاهش عدم اطمینان و صرفه‌جویی بیشتر در منابع و زمان دور از انتظار نیست.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating consumer behavior change in ride-haling plaforms with the innovation ecosystem approach

نویسندگان [English]

  • Mohammad Ehsan Zandi 1
  • Fatemeh Saghafi 2
1 Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran
2 Associate Professor, Department of Industrial Management, Faculty of Management, University of Tehran
چکیده [English]

Objective: The present study aimed to find the reasons for consumers behavior change in ride-hailing innovation ecosystem in Iran.
Methodology: This research is applied in terms of purpose and used a qualitative approach. The present study has used causal layered analysis. This research has tried to study the phenomenon by using a library research and Delphi technique consisting of 18 academic and business experts.
Findings: There are several reasons for consumers behavior change in ride-hailing innovation ecosystem at four levels of litany, system, worldview and metaphor and myth. The most important findings were at the systemic level and metaphors and myths. System-level findings include the use of information technology tools, new mega trends, sharing economy and increasing productivity. Findings at the level of metaphors and myths also include the innate human tendency for maximum ease, the innate human tendency for the least uncertainty, the need for transparency, the tendency to save the most resources and time.
Conclusion: Consumers' expectation of continuous improvement is likely to lead to more innovations in this ecosystem., the emergence of new actors to achieve greater ease, greater transparency, reduce uncertainty and save more resources and time is expected.

کلیدواژه‌ها [English]

  • Innovation
  • Innovation Ecosystem
  • Consumer Behavior
  • Sharing Economy
  • Causal Layered Analysis
  1. Adner, R. (2006). Match your innovation strategy to your innovation ecosystem .Harvard business review, 84(4), 98 .
  2. Allen, D. R. S. a. T. (2018). Studying innovation ecosystems using ecology theory. Technological Forecasting and Social Change, 136, 88-10 .2
  3. Amiramini kahrizeh, A., Abdoli, G., & safari, h. (2020). Incumbent responses to new entrants with considering the Game Theory approach (Case study: Taxi, Snapp and Tap30) [Research]. Quarterly Journal of Economic Research and Policies, 28(93), 149-170. https://doi.org/10.52547/qjerp.28.93.149
  4. Babar, Y., & Burtch, G. (2020). Examining the heterogeneous impact of ride-hailing services on public transit use. Information Systems Research, 31(3), 820-834 .
  5. Barbu, C. M., Florea, D. L., Ogarcă, R. F., & Barbu, M. C. (2018). From ownership to access: How the sharing economy is changing the consumer behavior. Amfiteatru Economic, 20(48), 373-387 .
  6. Belezas, F., & Daniel, A. D. (2022). Innovation in the sharing economy: A systematic literature review and research framework. Technovation, 102509 .
  7. Bishop, B. J., & Dzidic, P. L. (2014). Dealing with wicked problems: Conducting a causal layered analysis of complex social psychological issues. American journal of community psychology, 53(1), 13-24 .
  8. Cirera, X., & Maloney, W. F. (2017). The innovation paradox: Developing-country capabilities and the unrealized promise of technological catch-up. World Bank Publications .
  9. Cramer, J., & Krueger, A. B. (2016). Disruptive change in the taxi business: The case of Uber. American Economic Review, 106(5), 177-182 .
  10. Creswell, J. W., & Creswell, D. J. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications .
  11. David, R. K. (2020). How to Create a Breakthrough Innovation: Futures Research Methodologies for Disruptive Innovation. In Sustainable Business: Concepts, Methodologies, Tools, and Applications (pp. 1891-1916). IGI Global .
  12. Eckhardt, G. M., Houston, M. B., Jiang, B., Lamberton, C., Rindfleisch, A., & Zervas, G. (2019). Marketing in the sharing economy. Journal of Marketing, 83(5), 5-27 .
  13. Engel, J., Blackwell, R., & Miniard, P. (1995). Consumer behavior. Fort Worth TX: Dryden .
  14. Ertz, M., Lecompte, A., & Durif, F. (2018). “It's not my fault, I am in the right!” Exploration of neutralization in the justification of the support and use of a controversial technological collaborative consumption service. Technological Forecasting and Social Change, 134, 254-264 .
  15. Garud, R., Kumaraswamy, A., Roberts, A., & Xu, L. (2022). Liminal movement by digital platform‐based sharing economy ventures: The case of Uber Technologies. Strategic management journal, 43(3), 447-475 .
  16. Geissinger, A., Laurell, C., & Sandström, C. (2020). Digital Disruption beyond Uber and Airbnb—Tracking the long tail of the sharing economy. Technological Forecasting and Social Change, 155, 119323 .
  17. Ghahfarokhi, M. B., Mohaghar, A., & Saghafi, F. (2018). The futures of the University of Tehran using causal layered analysis. foresight .
  18. Godin, B. (2015). Innovation contested :The idea of innovation over the centuries. Routledge .
  19. Gomes, L. A. d. V., Salerno, M. S., Phaal, R., & Probert, D. R. (2018). How entrepreneurs manage collective uncertainties in innovation ecosystems. Technological Forecasting and Social Change, 128 .185-164 ,
  20. Granstrand, O., & Holgersson, M. (2020). Innovation ecosystems: A conceptual review and a new definition. Technovation, 90-91 .
  21. Hoyer, W. D., MacInnis, D. J., & Pieters, R. (2012). Consumer behavior. Cengage Learning .
  22. Huynh, T. L. D., Vo, A. K .H., Nguyen, T. H. H., Le Nguyen, V. B., Ho, N. N. H., & Do, N. B. (2020). What makes us use the shared mobility model? Evidence from Vietnam. Economic analysis and policy, 66, 1-13 .
  23. Inayatullah, S. (1998). Causal layered analysis: Poststructuralism as method. Futures, 30(8), 815-829 .
  24. Inayatullah, S., & Milojevic, I. (2015). CLA 2.0: Transformative research in theory and practice. University of the Sunshine Coast, Queensland .
  25. Kardes, F., Cronley, M., & Cline, T. (2014). Consumer behavior. Cengage Learning .
  26. Laurell, C., & Sandström, C. (2017). The sharing economy in social media: Analyzing tensions between market and non-market logics. Technological Forecasting and Social Change, 125, 58-65 .
  27. Lee, C. K. H., & Wong, A. O. M. (2021). Antecedents of consumer loyalty in ride[1] Transportation Research Part F: Traffic Psychology and Behaviour, 80, 14-33 .
  28. Melnyk, V., Carrillat, F. A., & Melnyk, V. (2022). The Influence of Social Norms on Consumer Behavior: A Meta-Analysis. Journal of Marketing, 86-98 ,)3( .120https://doi.org/10.1177/00222429211029199
  29. Min, S., So, K. K. F., & Jeong, M. (2019). Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model. Journal of Travel & Tourism Marketing, 36(7), 770-783 .
  30. Mitręga, M., & Choi, T.-M. (2021). How small-and-medium transportation companies handle asymmetric customer relationships under COVID-19 pandemic: A multi-method study. Transportation Research Part E: Logistics and Transportation Review, 148, 102249 .
  31. Morshed, S. A., Khan, S. S., Tanvir, R. B., & Nur, S. (2021). Impact of COVID-19 pandemic on ride-hailing services based on large-scale Twitter data analysis. Journal of Urban Management, 10(2), 155-165 .
  32. Moschis, G. P. (2007). Life course perspectives on consumer behavior. Journal of the Academy of Marketing Science, 35(2), 295-307 .
  33. Nadeem, W., Juntunen, M., Shirazi, F., & Hajli, N. (2020). Consumers’ value co[1]creation in sharing economy: The role of social support, consumers’ ethical perceptions and relationship quality. Technological Forecasting and Social Change, 151, 119786 .
  34. Nasution, A. A., Erwin, K., & Bartuska, L. (2020). Determinant study of conventional transportation and online transportation. Transportation Research Procedia,44, 276-282 .
  35. Nguyen-Phuoc, D. Q., Su, D. N., Tran, P. T. K., Le, D.-T. T., & Johnson, L. W. (2020). Factors influencing customer's loyalty towards ride-hailing taxi services–A case study of Vietnam. Transportation Research Part A: Policy and Practice, 134, 96-112 .
  36. Nobakht, M. B. (2017). Advanced research method. Academic Center for Education, Culture and Research .
  37. Palmié, M., Wincent, J., Parida, V., & Caglar, U. (2020). The evolution of the financial technology ecosystem: An introduction and agenda for future research on disruptive innovations in ecosystems. Technological Forecasting and Social Change, 151, 119779 .
  38. Pilinkienė, V., & Mačiulis, P. (2014). Comparison of different ecosystem analogies: The main economic determinants and levels of impact. Procedia-social and behavioral sciences, 156, 365-370 .
  39. Pushpananthan, G., & Elmquist, M. (2022). Joining forces to create value: The emergence of an innovation ecosystem. Technovation, 115, 102453 .
  40. Schor, J. B., & Fitzmaurice, C. J. (2015). Collaborating and connecting: the emergence of the sharing economy. In Handbook of research on sustainable consumption. Edward Elgar Publishing .
  41. Septiani, R., Handayani, P. W., & Azzahro, F. (2017). Factors that affecting behavioral intention in online transportation service: Case study of GO-JEK. Procedia Computer Science, 124, 504-512 .
  42. Şimşek, T., Öner, M. A., Kunday, Ö., & Olcay, G. A. (2022). A journey towards a digital platform business model: A case study in a global tech-company. Technological Forecasting and Social Change, 175, 121372 .
  43. Smorodinskaya, M. G. R. a. N. V. (2018). Leveraging complexity for ecosystemic innovation. Technological Forecasting and Social Change, 136, 114-131 .
  44. Subriadi, A. P., & Baturohmah, H. (2022). Social media in marketing of ride-hailing: A systematic literature review. Procedia Computer Science, 197, 102-109 .
  45. Tidd, J., & Bessant, J. R. (2020). Managing innovation: integrating technological, market and organizational change. John Wiley & Sons .
  46. Troise, C., Corvello, V ,.Ghobadian, A., & O'Regan, N. (2022). How can SMEs successfully navigate VUCA environment: The role of agility in the digital transformation era. Technological Forecasting and Social Change, 174, 121227 .
  47. Tsujimoto, M., Kajikawa, Y., Tomita, J., & Matsumoto, Y. (2018). A review of the ecosystem concept—Towards coherent ecosystem design. Technological Forecasting and Social Change, 136, 49-58 .
  48. Yu, T. H.-K., Huarng, K.-H., & Lai, Y. T. (2021). Configural analysis of innovation for exploring economic growth .Technological Forecasting and Social Change, 172, 121019 .
  49. Zuo, W., Zhu, W., Chen, S., & He, X. (2019). Service quality management of online car-hailing based on PCN in the sharing economy. Electronic Commerce Research and Applications, 34, 100827