شناسایی زمینه‌های کاربرد کلان داده در بازاریابی

نوع مقاله : مروری

نویسندگان

1 مدیریت بازاریابی بین الملل/ دانشکده علوم اجتماعی و مدیریت، دانشگاه الزهرا، تهران،

2 مدیریت/ دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا، تهران، ایران

چکیده

هدف: با توجه به ظهور و رشد روزافزون داده‌های با حجم، سرعت و تنوع بالا یا به‌عبارت‌دیگر کلان داده و پتانسیل بالای آن در ایجاد منافع برای سازمان‌ها علی‌الخصوص بخش بازاریابی به دلیل محوریت داده و تحلیل داده، پژوهش حاضر باهدف شناسایی زمینه‌های کاربرد کلان داده در بازاریابی و ارائه مدلی در این زمینه انجام‌شده است.

روش‌شناسی: تحقیق حاضر به لحاظ ماهیت، کیفی و ازنظر هدف، کاربردی است. در این پژوهش به‌منظور تبیین مدلی جامع و به کمک روش پژوهش فراترکیب، 30 مقاله در بازه زمانی 2006-2020 با بهره‌گیری متدولوژی کسپ بررسی و زمینه‌های کاربرد کلان داده در آمیخته بازاریابی شناسایی و اولویت‌بندی شدند.

یافته‌ها: پس از تجزیه‌وتحلیل مقالات، ابتدا 187 کد از ارزش‌های محوری کلان داده شناسایی و در 16 تم و 4 مقوله محصول، قیمت، پیشبرد و توزیع طبقه‌بندی و اولویت‌بندی شدند. نتایج این تحقیق نشان داد که بیشترین فراوانی در چهار آمیخته بازاریابی به‌طور کل و در آمیخته محصول به‌طور خاص مربوط به بعد ارزشی «شخصی‌سازی و سفارشی‌سازی محصول (کالا یا خدمت)» است.

نتیجه‌گیری: نتایج این پژوهش نشان داد که مهم‌ترین ارزش کلان داده در آمیخته محصول مختص به «شخصی‌سازی و سفارشی‌سازی محصول (کالا یا خدمت)»، در آمیخته قیمت‌گذاری مختص به «قیمت‌گذاری پویا»، در آمیخته مکان مختص به «خودکارسازی سازی فرآیندهای توزیع، سفارش و تحویل» و در آمیخته پیشبرد فروش مختص به بهبود سیستم‌های CRM" است. این پژوهش منجر به گسترده شدن بدنه دانشی ادبیات تحقیقات شده و می‌تواند درک عمیقی از ارزش کلان داده در آمیخته بازاریابی را به محققان و مدیران بازاریابی ارائه دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Fields of Big Data Application in Marketing

نویسندگان [English]

  • Saba Abdian 1
  • Masoumeh Hosseinzadeh Shahri 2
  • Ameneh Khadivar 2
1 International marketing management/, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran
2 Management/ Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran
چکیده [English]

Objective: Big data has an undeniable potential for creating value in the marketing sector (due to the importance of data in all of its activities). However, due to research fragmentation, no comprehensive theoretical framework for this topic exists. This study aims to identify and present a comprehensive model of big data application in marketing.
Methodology: The present research is qualitative in nature and falls into applied research in terms of the purpose of the study. To explain and prioritized big data application through makreting-mix, the Meta-synthesis approach is used. After performing CASP analysis, eventually, 30 essays are investigated from 2006 to 2020.
Results: In this study, 187 codes of core values of big data were identified and classified into 16 themes and four categories. The results of this study showed that the highest frequency is related to the value dimension of "personalization and customization of products and services".
Conclusion: According to the study's findings, the most important big data values related to the product, pricing, place, and promotion category are dedicated to "personalization and customization of products and services, "dynamic pricing", "automation of distribution processes, ordering and delivery" and "CRM systems improvement". This research has contributed to the expansion of the research literature's knowledge body and can provide researchers and marketing managers with a thorough understanding of the value of big data in the marketing mix.

کلیدواژه‌ها [English]

  • Value
  • Marekting- mix
  • Big data
  • Big data analytics
  1. Akter, S. and Wamba, S. F. (2016). “Big data analytics in E-commerce: a systematic review and agenda for future research.” Electronic Markets, 26(2).
  2. Akter, S., Hossain, M. A., Lu, Q. (Steven), & Shams, S. M. R. (2021). Big data-driven strategic orientation in international marketing. International Marketing Review, 38(5),927–947. https://doi.org/10.1108/IMR-11-2020-0256
  3. Akter, S., Wamba, S. F., & Akter, S. and Wamba, S. F. (2016). Big data analytics in E[1]commerce: a systematic review and agenda for future research. Electronic Markets, 26(2), 173–194. https://doi.org/10.1007/s12525-016-0219-0
  4. (2018). Research trends on Big Data in Marketing. European research on management and business economics.
  5. Amit, R., & Zott, C. (2001). Value creation in e-business. Strategic Management Journal, 22(6–7), 493–520. https://doi.org/10.1002/smj.187
  6. Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2), 323–346. https://doi.org/10.1108/BPMJ-04-2017-0088
  7. Babin, B. J., Feng, C., & Borges, A. (2021). As the wheel turns toward the future of retailing. Journal of Marketing Theory and Practice, 29(1), 78–91. https://doi.org/10.1080/10696679.2020.1860688
  8. Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial Marketing Management, 92, 178–189. https://doi.org/10.1016/j.indmarman.2020.12.001
  9. Balducci, B., & Marinova, D. (2018). Unstructured data in marketing. Journal of the Academy of Marketing Science, 46(4), 557–590. https://doi.org/10.1007/s11747-018-0581-x
  10. Banker, S. (2014). (2014). Amazon and anticipatory shipping: A dubious patent? Forbes.
  11. Bench, S., & Day, T. (2010). Bench, Suzanne; & Day, Tina. (2191). The user experience of critical care discharge: a metasynthesis of qualitative research. International Journal of Nursing Studies, 47(4), 467-411.
  12. Benoit, D. F., Lessmann, S., & Verbeke, W. (2020). On realising the utopian potential of big data analytics for maximising return on marketing investments. Journal of Marketing Management ISSN:, 36(3–4), 233–247.
  13. Brown, B., Chul, M., & Manyika, J. (2011). Are you ready for the era of “big data”? McKinsey Quarterly, 4.Campbell, C., Sands, S., Ferraro, C., Tsao, H. Y. (Jody), & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227–243. https://doi.org/10.1016/j.bushor.2019.12.002
  14. Campbell, R., Pound, P., Pope, C., Britten, N., Pill, R., Morgan, M., & Donovan, J. (2003). Evaluating meta-ethnography: a synthesis of qualitative research on lay experiences of diabetes and diabetes care. Social Science & Medicine, 56(4), 671–684. https://doi.org/10.1016/S0277-9536(02)00064-3
  15. Cao, G., Duan, Y., & El Banna, A. (2019). A dynamic capability view of marketing analytics: Evidence from UK firms. Industrial Marketing Management, 76(September 2017), 72–83. https://doi.org/10.1016/j.indmarman.2018.08.002
  16. Cao, L. (2021). Artificial intelligence in retail: applications and value creation logics.International Journal of Retail and Distribution Management. https://doi.org/10.1108/IJRDM-09-2020-0350
  17. Chiang, R. H. L. L., Grover, V., Liang, T.-P., & Zhang, D. (2018). Special Issue: Strategic Value of Big Data and Business Analytics. Journal of Management Information Systems, 35(2), 383–387. https://doi.org/10.1080/07421222.2018.1451950
  18. Côrte-Real, N., Ruivo, P., Oliveira, T., & Popovič, A. (2019). Unlocking the drivers of big data analytics value in firms. Journal of Business Research, 97, 160–173. https://doi.org/10.1016/j.jbusres.2018.12.072
  19. Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
  20. De Luca, L. M., Herhausen, D., Troilo, G., & Rossi, A. (n.d.). How and when do big data investments pay off? The role of marketing affordances and service innovation. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-020-00739-x
  21. Dellaert, B. G. C., Shu, S. B., Arentze, T. A., Baker, T., Diehl, K., Donkers, B., Fast, N. J., Haubl, G., Johnson, H., Karmarkar, U. R., Oppewal, H., Schmitt, B. H., Schroeder, J., Spiller, S. A., & Steffel, M. (2020). Consumer decisions with artificially intelligent voice assistants. Marketing Letters, 31(4, SI), 335–347. https://doi.org/10.1007/s11002-020-09537-5
  22. Dubey, R., Gunasekaran, A., & Childe, S. J. (2019). Big data analytics capability in supply chain agility. Management Decision, 57(8), 2092–2112. https://doi.org/10.1108/MD[1]01-2018-0119
  23. Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2019). A multi-dimension framework for value creation through big data. Industrial Marketing Management, 90, 508–522. https://doi.org/10.1016/j.indmarman.2019.08.004
  24. Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2020). A multi-dimension framework for value creation through big data. Industrial Marketing Management, 90, 508–522. https://doi.org/10.1016/j.indmarman.2019.08.004
  25. Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897–904. https://doi.org/10.1016/j.jbusres.2015.07.001
  26. Fan, S., Raymond, Y. K. L., & Leon, J. Z. (2015). Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix.
  27. Fielt, E., Desouza, K. C., Gable, G., & Westerveld, P. (2019). Data-Driven Business Models and Professional Services Firms: A Strategic Framework and Transitionary Pathways. Lecture Notes in Business Information Processing, 357, 26–38. https://doi.org/10.1007/978-3-030-22784-5_3
  28. Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
  29. George, G., Lavie, D., & Scott, B. A. (2016). Big Data and Data Science Methods for Management Research Academy of Management Journal. October. https://doi.org/10.5465/amj.2016.4005
  30. Gnizy, I. (2019). Big data and its strategic path to value in international firms. International Marketing Review, 36(3), 318–341. https://doi.org/10.1108/IMR-09-2018-0249
  31. Grover, V., Chiang, R. H. L. L., Liang, T.-P. P., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
  32. Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., Feldberg, F.(2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26(3), 191–209. https://doi.org/10.1016/j.jsis.2017.07.003
  33. Hallikainen, H., Savimaki, E., & Laukkanen, T. (2020). Fostering B2B sales with customer big data analytics. Industrial Marketing Management, 86. https://doi.org/10.1016/j.indmarman.2019.12.005
  34. Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a taxonomy of data-driven business models used by start-up firms. International Journal of Operations and Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-02-2014-0098
  35. Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
  36. Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
  37. Huang, M. H., & Rust, R. T. (2013). IT-Related Service: A Multidisciplinary Perspective. Journal of Service Research, 16(3), 251–258. https://doi.org/10.1177/1094670513481853
  38. Jarek, K., & Mazurek, G. (2019). MARKETING AND ARTIFICIAL INTELLIGENCE. Central European Business Review, 8(2), 46–55. https://doi.org/10.18267/j.cebr.213
  39. Johnson, D. S., Muzellec, L., Sihi, D., & Zahay, D. (2019). The marketing organization’s journey to become data-driven. Journal of Research in Interactive Marketing, 13(2), 162–178. https://doi.org/10.1108/JRIM-12-2018-0157
  40. Kumar, V., Ramachandran, D., & Kumar, B. (2021). Influence of new-age technologies on marketing: A research agenda. Journal of Business Research, 125, 864–877. https://doi.org/10.1016/j.jbusres.2020.01.007
  41. Kwok, L., Tang, Y., & Yu, B. (2020). The 7 Ps marketing mix of home-sharing services: Mining travelers’ online reviews on Airbnb. International Journal of Hospitality Management, 90(July). https://doi.org/10.1016/j.ijhm.2020.102616
  42. Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387–394.
  43. Li, M., Zhang, Z., & Hu, Z. (2017). Big Data-driven Technology Innovation: Concept and Key Problems. In The Sixteenth Wuhan International Conference on E-Business. http://aisel.aisnet.org/whiceb2017/17
  44. Ma, L., & Sun, B. (2020). Machine learning and AI in marketing - Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481–504. https://doi.org/10.1016/j.ijresmar.2020.04.005
  45. Manyika, J., Chui, M., B., B., J., B., R., D., Roxburgh, C., & Byres, and H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://doi.org/10.1080/01443610903114527
  46. Mcafee, A., & Brynjolfsson, E. (2012). Spotlight on Big Data Big Data: The Management Revolution. Harvard Business Review.
  47. Mcafee, A., Brynjolfsson, E., & Mcafee, A., & Brynjolfsson, E. (2012). Spotlight on Big Data Big Data: The Management Revolution, 2012. Acedido em 15-03-2017. Harvard Business Review, 90(October), 1–9. http://tarjomefa.com/wp-content/uploads/2017/04/6539-English-TarjomeFa-1.pdf
  48. McCarthy, E. J., Shapiro, S. J., & & Perreault, W. D. (1979). Basic marketing. Ontario: Irwin-Dorsey.
  49. Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: a systematic literature review and research agenda. Information Systems and E-Business Management, 16(3), 547–578. https://doi.org/10.1007/s10257-017-0362-y
  50. Mustak, M., Salminen, J., Plé, L., Wirtz, J., Ple, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124(November 2020), 389–404. https://doi.org/10.1016/j.jbusres.2020.10.044
  51. Philip Chen, C. L., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/10.1016/j.ins.2014.01.015
  52. Potter, W. J., & Levine-Donnerstein, D. (1999). Rethinking validity and reliability in content analysis. Journal of Applied Communication Research, 27(3), 258–284. https://doi.org/10.1080/00909889909365539
  53. Ritson, M. (2014). (2014). Amazon has seen the future of predictability. MarketingWeek from. http://www.marketingweek.co.uk/opinion/ritson/ amazon-has-seen-the-future-of[1]predictability/4009154.article
  54. Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002
  55. Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206–221. https://doi.org/10.1287/mksc.2013.0836
  56. Sandelowski, M., & Barroso, J. (2007). Handbook for synthesizing qualitative research: Springer.
  57. Sheng, Jie and Amankwah-Amoah, Joseph and Wang, X. (2017). A multidisciplinary perspective of big data in management research.
  58. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
  59. Sun, S., Cegielski, C. G., & Li, Z. (2015). Amassing and Analyzing Customer Data in the Age of Big Data: A Case Study of Haier’s Online-to-Offline (O2O) Business Model. Journal of Information Technology Case and Application Research, 17(3–4), 156–165. https://doi.org/10.1080/15228053.2015.1095017
  60. Ungerman, O., & Dedková, J. (2019). Marketing Innovations in Industry 4.0 and Their Impacts on Current Enterprises. Applied Sciences, 9, 3685.
  61. Urbinati, A., Bogers, M., Chiesa, V., & Frattini, F. (2019). Creating and capturing value from Big Data: A multiple-case study analysis of provider companies. Technovation, 84–85, 21–36. https://doi.org/10.1016/j.technovation.2018.07.004
  62. Vlacic, B., Corbo, L., Costa e Silva, S., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128(March 2020), 187–203. https://doi.org/10.1016/j.jbusres.2021.01.055
  63. Walsh, D., & Downe, S. (2005). Meta-synthesis method for qualitative research: A literature review. In Journal of Advanced Nursing (Vol. 50, Issue 2, pp. 204–211). https://doi.org/10.1111/j.1365-2648.2005.03380.x
  64. Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413
  65. Xie, K., Wu, Y., Xiao, J., & Hu, Q. (2016). Value co-creation between firms and customers: The role of big data-based cooperative assets. Information and Management, 53(8), 1034–1048. https://doi.org/10.1016/j.im.2016.06.003
  66. Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69(5), 1562–1566. https://doi.org/10.1016/j.jbusres.2015.10.017
  67. Zhang, C., Wang, X., Cui, A. P., & Han, S. (2020). Linking big data analytical intelligence to customer relationship management performance. Industrial Marketing Management, 91(16), 483–494. https://doi.org/10.1016/j.indmarman.2020.10.012
  68. Zhang, H., & Xiao, Y. (2020). Customer involvement in big data analytics and its impact on B2B innovation. Industrial Marketing Management, 86(February 2019), 99–108. https://doi.org/10.1016/j.indmarman.2019.02.020
  69. Zhang, J. Z., & Iv, G. F. W. (2020). Marketing ecosystem: An outside-in view for sustainable advantage. Industrial Marketing Management, January